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Motivation: Lorenz-gauge time-domain calc. on Kerr

Q1.

Q2.

Why consider Kerr?
Galactic BHs are rotating, a/M ~ 0.5 — 0.99.

Rotation breaks symmetry and leads to physical effects, e.g. ergodic
geodesics, frame-dragging, light-cone caustics become ‘tubes’, etc.

Resonances: Generic orbits may pass through resonance when
wy/wp ~ n1/ny [Hinderer & Flanagan).

Why work in Lorenz-gauge?
Hyperbolic (wave-like) formulation of equations.

S-field has ‘symmetric’ singular part hgp ~ 1/7
= regularization is well-understood.

. Why work in time-domain?

Lorenz-gauge MP not separable on Kerr
= no ordinary diff. eq. formulation in freq. domain.

Self-consistent evolutions are most naturally handled with
time-domain scheme.



Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

Dﬁab + 2]%CadeCd =+ ZC;C — “ab — Zb§a = _167TTab’

g = Bab;b, where hgp, is the trace-reversed metric perturbation:

Bab = hab — %gabh; and h = haa.



Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

|:lﬁab + 2]%CadeCd =+ Zc;c — “ab — Zb;a = _167TTab’

g = Bab;b, where hgp, is the trace-reversed metric perturbation:

Bab = hab — %gabh; and h = haa.

74 system and gauge choice

Use Generalized Lorenz gauge with gauge-driver Hy (hpe, ):
Zy = Hy(z,hye) (=0 for Lor. gauge)
74 system: 10 eqns with 4 constraints,

Ohap + 2R phea + HSe — Hop — Hyy = —167Ty,
co=2s—H, = 0




Formulation: Linearized equations

74 with constraint damping

|:lhab + 2Rcadbﬁcd + HC;C — Ilgp — Hb;a
+K (ngey + npcg) = =167,

where k() is a scalar function and n, is a vector, and
Co = Zgq — Hy.

o Choose k, ng so that constraints are damped, under
;b
Oeq = — (k(ngcp +npcqa))”

e Good choice: n, = ingoing principal null direction, with x < 0.

@ hg is a solution of lin. Einstein eqns iff ¢, = 0.



Formulation: Mass and angular momentum

e Combine Killing vector X* and stress-energy Ty, to form

conserved current: j, = T, X, J, = 0.

e Poincaré lemma: §j =0 = j = JF (where 0 = *dx), i.e.

Ja = Fab;b, where  Fip = Fiqy,

Abbott & Deser (1982): Conserved two-form

Fab = _(871-)_1 (Xci_lc[a;b] -+ Xc;[aﬁb}c + X[aZb]) )




Formulation: Mass and angular momentum

Apply Stokes’ theorem to get ‘quasi-local’ definitions:

/ jeds, = / Fob, 5,
b y

T2
[ / F“deab]
% r

1

2
X%y, 11 <710 < T2,
0, otherwise.



Formulation: Mass and angular momentum

1
Quasi-local quantity: Q(X,0%) = 2/ FdS.
ox

Is @ a useful definition of the mass/ang.mom. in a
given homogeneous metric perturbation hy,?

Property 1: @) is gauge-invariant

o If hgp = 2€(qyp) then Fyy o< 7, , where

Nabe X X[a&b;c} + X[a;bé-c]'

o It follows that Q o< [(bg,g — ba,s)d0dd = [by]g = 0,
where b = *.




Formulation: Mass and angular momentum

1
Quasi-local quantity: Q(X,0%) = 2/ F®dS .
)

Is @ a useful definition of the mass/ang.mom. in a
given homogeneous metric perturbation h,,?

Property 2: @ gives correct mass/ang. mom. for Kerr pert.

° Xy =11,0,0,0] & Q) and X =[0,0,0,1] & Q)

e Mass (M) and ang. mom (J = aM) perturbations:

6 T
hap = pE N = Qu=pE Qg =0.
J

Wgab

hab:,u‘c 0 Kerr

5.7 90b = Qu=0, Q) =pL

M




Formulation: Puncture scheme

@ Problem: h,; is divergent ~ 1/¢ towards worldline

@ Solution: Introduce puncture l}fb: a local approximation to
Detweiler-Whiting singular field A%,

@ Covariant expansion of hfb = power-series in coordinate differences,

0x® =z — 1% where x =field pt, Z = worldline pt

@ Classification: nth order puncture iff
hE, — iy ~ O (|62|5272)

@ 2nd-order in Barack et al 07, 4th+ order from Wardell.

@ Local — Global definition: let Z become a function of z, e.g. set t = t,
X = x,(t).

@ Global continuation is arbitrary, but should be smooth around circle,
except at worldline

@ Use a periodic definition ¢, e.g. §p? — 2(1 — cos §p) = dp? + O(5p?)



Formulation: Puncture scheme

Introduce a worldtube 7 surrounding the worldline:
@ Outside worldtube 7, evolve retarded field hqy.

e Inside worldtube 7, evolve residual field b, i.e

Dhap = 0, outside 7,
DhR = —167T<, inside 7,
hfb = hgp — hfb, across 07 .

where T = T, — (=167)~'Dh7,, and D is wave operator.

@ Compute self-force F,, and gauge-invariant H from residual R field:

plE, = wg% ke . H = Lutul ling nE.



Formulation: m-mode decomposition

Exploit the axial symmetry: decompose MP in m-modes
= 2+1D eqns:
Bab = Z Bl(::)(?iml’a.
m
o Real field = A7) = 2(,™
@ Reconstruct self-force, field, etc. from mode sums, e.g.
BaRb = lim (hfz?_o) +2 Z Re [hﬁ(m)eim“"’(”])

T—2z
m=0

@ Convergence-with-m depends on order of puncture:

© Second-order = F\™, be(m) ~ O(m™?)

© Fourth-order = F\™, lezb(m) ~ O(m™4)
@ ...etc...



Implementation: Circular orbits on Kerr

@ Particle on circular orbit with frequency w = vV M/ (7”8/ >+ avM)
@ Define h,p w.r.t. Boyer-Lindquist coordinate system (t,, 6, ¢)

e Introduce tortoise coords: ry = [ Tzzaz dr, p=¢+ [ &dr




Implementation: Circular orbits on Kerr

Particle on circular orbit with frequency w = v M/ (7”8/ >+ avM)
Define h,p w.r.t. Boyer-Lindquist coordinate system (¢,7, 6, ¢)

Introduce tortoise coords: 7, = [ Tzzaz dr, p=¢+ [ &dr

Second-order puncture h’, ~ 4jxqp/€ [Barack et al.’07], with

) uqup + Copdr for ab = tt, to, p¢
Xab = Capsin oo for ab = tr, to.

@ m-mode decomposition:

e e—im(wt+Ag)  pm _ —im
hay " = g / hly (07,00, 5¢)e ™% d(5¢)

—T

Integrals have an elliptic integral representation.



Implementation: Circular orbits on Kerr

@ Particle on circular orbit with frequency w = vV M/ (7”8/ >+ avM)
@ Define h,p w.r.t. Boyer-Lindquist coordinate system (t,, 6, ¢)

e Introduce tortoise coords: ry = [ Tzzaz dr, p=¢+ [ &dr

@ Second-order puncture h¥, ~ 4uxap/€ [Barack et al.’07], with

) uqup + Copdr for ab = tt, to, p¢
Xab = Capsin oo for ab = tr, to.

@ m-mode decomposition:

Sp(my e TmWtrAd) T —im
Ry = T/, By (01,89, 66)e” " d(50)

Integrals have an elliptic integral representation.
(m)

@ Use scaled evolution variables u,, ",

—(m 1 .
hz(zb) = *EaEbuib )(t,r, 6) (no sum)
'

where E, = [1,1/(r — rp,),r, 7 sin6)].



Implementation: Circular orbits on Kerr

I used Lorenz-gauge Z4 system with constraint damping.
Cauchy evolution in (¢, 7., ¢), with worldtube and effective source.

Fourth-order-accurate finite-differencing . ..except at worldline where
residual field is not smooth.

Boundary conditions:
@ Regular MP at the poles
© Regular MP on the future horizon
(3] ug:) ~O(1)asr — o0
Trivial initial conditions, ul(::) =0 ... wait long enough and

‘Junk’ dissipates with time (in radiative sector).

Gauge-violation is driven to zero.



Results: Modal profiles

Slice 1: t = 250M,0 = /2 (and rq = TM, m = 2)

Metric perturbation in equatorial plane as a function of radius
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Results: Modal profiles

Slice 2: t = 250M,r = 1o (and ro = TM, m = 2)

Angular profile of metric perturbations
0.2 T T T




Results: Modal profiles (rg = 7M, m = 2)

Slice 3: 6 = x/2, r =19 (and ro = TM, m = 2)

0.2 [

Regularized metric perturbation on worldline as a function of time
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Results: Gauge-constraint violation

r component of Lorenz-gauge violation
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e Constraint violation diminishes with increasing grid resolution



Results: F; and energy balance

7.410°

(m=3)

Ef

7.310°

7.210°

@ Showing time-domain value of F} for various grid resolutions dr, = M /n.

@ In principle, F; = uBE, where E is energy loss rate (from Teuk. 1, 1b4).



Results: F; and energy balance
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extrapolation
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e Extrapolate over grid resolution to obtain best estimate

e Convergence rate only 22 Inz with 2nd-order puncture



Results: F; validation at a = 0.5M (m = 2 mode)

Comparing Energy Flux (Finn Thorne 2000) with F, component of Self-For
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@ For each m-mode, validate £ = F, /u}, against results of Finn & Thorne.

@ 0.3% disagreement here because Finn & Thorne give E., whereas
E = Eyx + Ehor-



Results: m-mode convergence: dissipative
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@ Modes of dissipative component of GSF, F;, converge exponentially,
" ~ exp(—Aml).



Results: m-mode convergence: conservative
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@ Modes of conservative component, F,. (and hf ) converge with
power-law, F/™ ~ m~2 (for 2nd-order puncture).



Problem: Linear-in-t modes in Lorenz gauge

e Problem: Modes m = 0,1 suffer from linear-in-¢ instabilities!

o Linear-in-t modes are homogeneous, pure-Lorenz-gauge solutions.
e Linear-in-t modes are regular on future horizon and asymp-flat.
o Linear-in-t modes are excited by generic initial data.

@ In Schw., these modes are in [ = 0, [ = 1 sectors only.

e N.B. No l-mode time-domain scheme has successfully evolved

Schw. [ = 0,1 modes in Lorenz gauge.

e Solution: Use a generalized Lorenz gauge to achieve stable
evolutions,

hy' = Ho(he, ).



Problem: Time Evolution of m = 0 mode

Regularized metric perturbations

Metric perturbations on the worldline : m =0

T
t———-
tr----

80
t/M

100

120

140



Radial Profile : m = 0 mode

Radial profile of metric perturbations at t = 50M
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Radial Profile : m = 0 mode

Radial profile of metric perturbations at t = 100M
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Radial Profile : m = 0 mode

Radial profile of metric perturbations at t = 150M
10 T T T

Metric perturbations




Solution : Generalized Lorenz gauge

e Found that an explicit gauge driver of the form:

H, x ng x hg?zo)/rk, where n, is ingoing null vector

restores stability to m = 0 sector.
e For circular orbits, hy. = 0, so this gauge is non-singular.
e Non-unique stationary solution which depends on initial condition.
e The static solution (hy = 0) is also in Lorenz gauge (Z, = 0).
o Take linear combination of solutions to find static soln hy. = 0.

@ Schw.: combine two solns in monopole (I = 0) sector.
@ Kerr: combine three solns, as mass & ang. mom. pert. are no
longer decoupled.

e Unnecessary if we are only interested in gauge-invariant (e.g. AU).



Solution : m = 1 mode?

o I have not found a generalized Lorenz gauge that stabilizes the

m = 1 sector.

e Instead, I apply a frequency-filter to eliminate stationary and
linear-in-¢ modes:

Hm=1)
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o This trick will not work for general orbits

250



Correcting the mass and angular momentum

Quasi-local mass and angular momentum in m=0 Lorenz-gauge perturbation
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e Take integrals over two-spheres to find ‘quasi-local’ mass Q) and
(m=0)

angular momentum @) (4) in numerical solution A,



Correcting the mass and angular momentum

@ To correct the mass and ang.mom. I add homogeneous Lorenz-gauge
solutions which are regular on the future horizon,

om) _ 0 07) _
hyy = mgab ; + gauge, h," = ﬁgab . + gauge.
@ ...but these solutions are not asymp-flat.

@ Recall that in Schw., the static Lorenz-gauge solution with correct mass

is not asymp-flat: hyy — —2a. (where oo = p/+/7o(ro — 3M) [Sago et al.
'08)).

o In Kerr, I find that Lorenz-gauge static solution with correct mass and
ang.mom. is not asymp-flat in two components:

htt ~ 0(1) and ht¢ ~ O(’I"Q).
@ In Schw., azimuthal ang. mom. is in [ = 1, m = 0 odd-parity mode.

@ In Schw., 0gq,/0J(a = 0) is already in Lorenz-gauge — this is not the
case in Kerr.



Gauge invariants in asymptotic flat gauge

@ To compare results with Post-Newtonian expansions, and radiation
gauge/Hertz potential approach of Friedman et al., I need the
perturbation in an asymptotically-flat gauge.

@ hy ~ O(1) is fixed with gauge vector £ = [t,0,0, 0]

o hyy ~ O(r?) is fixed with €% = [0,0,0,#], where  is ingoing time
coordinate.

@ Detweiler has identified quantities that are gauge-invariant in a class of
(asymp-flat) gauges sharing helical symmetry of circular orbits:

(O + wdy) €4 = 0.
e Redshift invariant: u! = uf + pAU + O(u?), where

AU = Hul, where = h R uub



Gauge invariant comparison : AU for circular orbits

First comparison of results for Detweiler’s invariant AU on Kerr
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invariant comparison : AU for circular orbits

First comparison of results for Detweiler’s invariant AU on Kerr
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Rad. gauge [S/F] | —0.29603  —0.25663  —0.22655 —0.20782  —0.20376
Lor. gauge [D/B] | —0.296(2) —0.262(2) —0.235(2) —0.218(2) —0.214(2)




Prospects for the future

@ What can we learn from AU calculation?

Are radiation-gauge and Lorenz-gauge results consistent?

If not, why not? Bug or conceptual issue?

Does AU agree with Post-Newtonian expansion, as r — 007
AU — ISCO shift, using method of Le Tiec.

@ Eccentric equatorial orbits:

e Need to find a stable non-singular gauge for m = 0, m = 1. What
can we learn here from Numerical Relativity?

o Periastron advance.

o Calibration of free parameters in EOB theory.

@ Generic orbits: Resonances? [Hinderer & Flanagan]
@ Self-consistent evolutions on Kerr.

@ Second-order-in-g calculations with worldtube scheme?
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